2 research outputs found

    On Generalization Bounds for Projective Clustering

    Full text link
    Given a set of points, clustering consists of finding a partition of a point set into kk clusters such that the center to which a point is assigned is as close as possible. Most commonly, centers are points themselves, which leads to the famous kk-median and kk-means objectives. One may also choose centers to be jj dimensional subspaces, which gives rise to subspace clustering. In this paper, we consider learning bounds for these problems. That is, given a set of nn samples PP drawn independently from some unknown, but fixed distribution D\mathcal{D}, how quickly does a solution computed on PP converge to the optimal clustering of D\mathcal{D}? We give several near optimal results. In particular, For center-based objectives, we show a convergence rate of O~(k/n)\tilde{O}\left(\sqrt{{k}/{n}}\right). This matches the known optimal bounds of [Fefferman, Mitter, and Narayanan, Journal of the Mathematical Society 2016] and [Bartlett, Linder, and Lugosi, IEEE Trans. Inf. Theory 1998] for kk-means and extends it to other important objectives such as kk-median. For subspace clustering with jj-dimensional subspaces, we show a convergence rate of O~(kj2n)\tilde{O}\left(\sqrt{\frac{kj^2}{n}}\right). These are the first provable bounds for most of these problems. For the specific case of projective clustering, which generalizes kk-means, we show a convergence rate of Ω(kjn)\Omega\left(\sqrt{\frac{kj}{n}}\right) is necessary, thereby proving that the bounds from [Fefferman, Mitter, and Narayanan, Journal of the Mathematical Society 2016] are essentially optimal

    The Power of Uniform Sampling for Coresets

    Full text link
    Motivated by practical generalizations of the classic kk-median and kk-means objectives, such as clustering with size constraints, fair clustering, and Wasserstein barycenter, we introduce a meta-theorem for designing coresets for constrained-clustering problems. The meta-theorem reduces the task of coreset construction to one on a bounded number of ring instances with a much-relaxed additive error. This reduction enables us to construct coresets using uniform sampling, in contrast to the widely-used importance sampling, and consequently we can easily handle constrained objectives. Notably and perhaps surprisingly, this simpler sampling scheme can yield coresets whose size is independent of nn, the number of input points. Our technique yields smaller coresets, and sometimes the first coresets, for a large number of constrained clustering problems, including capacitated clustering, fair clustering, Euclidean Wasserstein barycenter, clustering in minor-excluded graph, and polygon clustering under Fr\'{e}chet and Hausdorff distance. Finally, our technique yields also smaller coresets for 11-median in low-dimensional Euclidean spaces, specifically of size O~(ε−1.5)\tilde{O}(\varepsilon^{-1.5}) in R2\mathbb{R}^2 and O~(ε−1.6)\tilde{O}(\varepsilon^{-1.6}) in R3\mathbb{R}^3
    corecore